Gaussian Fluctuations for Random Matrices with Correlated Entries
نویسندگان
چکیده
For random matrix ensembles with non-gaussian matrix elements that may exhibit some correlations, it is shown that centered traces of polynomials in the matrix converge in distribution to a Gaussian process whose covariance matrix is diagonal in the basis of Chebyshev polynomials. The proof is combinatorial and adapts Wigner’s argument showing the convergence of the density of states to the semicircle law.
منابع مشابه
CLT for spectra of submatrices of Wigner random matrices
Citation Borodin, Alexei. "CLT for spectra of submatrices of Wigner random matrices. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract. We prove a CLT for spectra of submatrices of real symmetric and Her-mitian Wigner matrices. We show that if in the standard normalization the fourth moment of the off-digonal entries ...
متن کاملAsymptotic Products of Independent Gaussian Ran- Dom Matrices with Correlated Entries
In this work we address the problem of determining the asymptotic spectral measure of the product of independent, Gaussian random matrices with correlated entries, as the dimension and the number of multiplicative terms goes to infinity. More specifically, let {X p(N)}p=1 be a sequence of N × N independent random matrices with independent and identically distributed Gaussian entries of zero mea...
متن کاملLocal Spectral Statistics of Gaussian Matrices with Correlated Entries
We prove optimal local law, bulk universality and non-trivial decay for the off-diagonal elements of the resolvent for a class of translation invariant Gaussian random matrix ensembles with correlated entries.
متن کاملFluctuations of the extreme eigenvalues of finite rank deformations of random matrices
Consider a deterministic self-adjoint matrix Xn with spectral measure converging to a compactly supported probability measure, the largest and smallest eigenvalues converging to the edges of the limiting measure. We perturb this matrix by adding a random finite rank matrix with delocalized eigenvectors and study the extreme eigenvalues of the deformed model. We give necessary conditions on the ...
متن کاملGaussian fluctuations for non-Hermitian random matrix ensembles
Consider an ensemble of N ×N non-Hermitian matrices in which all entries are independent identically distributed complex random variables of mean zero and absolute mean-square one. If the entry distributions also possess bounded densities and finite (4 + ε) moments, then Z. D. Bai [Ann. Probab. 25 (1997) 494–529] has shown the ensemble to satisfy the circular law: after scaling by a factor of 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006